Molecular basis of inward rectification: structural features of the blocker defined by extended polyamine analogs.
نویسندگان
چکیده
Polyamines cause inward rectification of Kir K(+) channels by blocking deep within the channel pore. We investigated structural constraints of polyamine block of strongly rectifying mutant K(ATP) channels (Kir6.2[L164C,N160D,C166S] + SUR1). We studied three groups of polyamine analogs: 1) conformationally restricted linear tetra-amines with a cycloalkyl or alkene group between the second and third amines (CGC-11047, CGC-11093, CGC-11099, and CGC-11098), 2) conformationally restricted linear deca-amines with a cycloalkyl or alkene group between the fifth and sixth amines (CGC-11150, CGC-11179, and CGC-11241), and 3) cyclic tetra-amines (CGC-11174, CGC-11197, CGC-11199, and CGC-11254). All linear analogs cause a voltage-dependent block similar to that of spermine, but slightly weaker (at 1 microM, V(1/2) for spermine block = -10 +/- 1 mV, Z = 2.9 +/- 0.1, n = 19; V(1/2) for analogs varies from polyamine -7 to +10 mV, Z = 2.6-3.9). These data indicate tolerance for conformational restriction and an upper limit to the voltage dependence of the blocking process. There was no voltage-dependent block by the cyclic compounds; instead, they induce irreversible rundown of the current. Structural models of Kir channels suggest that a narrow entry at the top of the cytoplasmic pore may exclude cyclic analogs from the inner cavity, thereby explaining the structure-activity relationship that we observe.
منابع مشابه
Molecular Basis of Inward Rectification
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity fil...
متن کاملParadoxical activation of an inwardly rectifying potassium channel mutant by spermine: "(b)locking" open the bundle crossing gate.
Intracellular polyamines are endogenous blockers of inwardly rectifying potassium (Kir) channels and underlie steeply voltage-dependent rectification. Kir channels with strong polyamine sensitivity typically carry a negatively charged side chain at a conserved inner cavity position, although acidic residues at any pore-lining position in the inner cavity are sufficient to confer polyamine block...
متن کاملControl of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel
Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, ...
متن کاملInward rectification in KATP channels: a pH switch in the pore.
Inward-rectifier potassium channels (Kir channels) stabilize the resting membrane potential and set a threshold for excitation in many types of cell. This function arises from voltage-dependent rectification of these channels due to blockage by intracellular polyamines. In all Kir channels studied to date, the voltage-dependence of rectification is either strong or weak. Here we show that in ca...
متن کاملMolecular basis of inward rectification: Polyamine interaction sites located by combined channel and ligand mutagenesis
Polyamines cause inward rectification of (Kir) K channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 68 2 شماره
صفحات -
تاریخ انتشار 2005